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1 Introduction

Determining the relationship between genotype variation and phenotypic traits
is a challenging task to accomplish. Part of the challenge has to do with vary-
ing biological factors that make it difficult to determine which genetic variants
led to a specific trait. Additionally, gathering enough data to understand how
rare genetic variants and common variants affect traits is difficult to do even in
genome wide association studies (GWAS).
Machine learning models have been utilized to try to predict traits from geno-
type data, but with increasingly complex models it becomes difficult to deter-
mine which loci had the largest contribution towards a predicted trait. In this
research project we attempt to solve the problem of causal loci identification
in complex machine learning models by determining the viability of SHAP at
identifying causal loci. We created increasingly complex simulations of genotype
and phenotype data that are passed into machine learning models for supervised
learning.
By using simulated data, we had scenarios where we knew the correct loci before-
hand which let us determine in what scenarios was SHAP viable to determine
causal loci and in which scenarios did SHAP fail. We performed multiple simu-
lation to find the accuracy of SHAP at determining causal loci where we varied
biological factors such as environmental noise, genetic effects, and loci interac-
tions. The results we obtained from our research indicates that regardless of
the complexity of our models and varying biological factors SHAP was able to
identify casual loci for Linear Regression, Random Forest, and Neural Network
model with high accuracy for one loci.When there were two loci Random Forest
and Neural Nets both struggled to get both causal loci correct. We also found
that Shapley values alone were not able detect interactions occurring between
loci, but SHAP interaction values could be used to determine if interactions took
place. From our results we can conclude that SHAP offers a promising method
to identify casual loci and can be used to determine if interactions occurred
between loci.
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2 Methods

2.1 Data Simulation

2.1.1 Genotype

The genotype data is simulated using the number of samples (n) and the length
of the chromosome (m) to generate a genotype matrix n x m (G). The frequency
of the allele at each loci (j) is obtained from a continuous uniform distribution.
The genotype for each individual (i) at a specific loci position (j) is determined
using fj

fj ∼ U(0, 1) (1)

Gij ∼ B(2, fj) (2)

The matrix is generated by initializing an n × m zero matrix and the allele
frequencies for all the loci using (1). For each sample position at each loci in
the matrix the frequency from (1) is used as the probability for the binomial
distribution (2) to determine genotype at that position.

2.2 Heritability

The variance of the environmental effect and the variance of the genetic effect
are used to generate the phenotype of the model, while following the constraint
in (2).

σ2
g + σ2

e = 1 (3)

Using (3) the heritability of the the target gene is determined.

h2 =
σ2
g

σ2
g + σ2

e

(4)

2.3 Phenotype

2.3.1 One Loci

βββ ∼ N(0, σ2
gIII) (5)

εj ∼ N(0, σ2
eIII) (6)

The phenotype expression for one loci is determined by randomly selecting a
causal SNP from the genotype G. The the genetic effect for the causal SNP is
a random variable from (5) and the genetic effect for all other SNPs will be 0.
The environmental effect on the phenotype per sample will be a random variable
from (6).

Yi = Xiβββ + εi (7)

εj ∼ N(0, σ2
eIII) (8)
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2.3.2 Two Loci

βββ ∼ N(0,
σ2
g

2
III) (9)

εj ∼ N(0, σ2
eIII) (10)

The phenotype expression for two loci is determined by randomly selecting 2
causal SNPs from the genotype G. The the genetic effect for the causal SNP
will be determined from (7) and the genetic effect for all other SNPs will be 0.
The environmental effect on the phenotype per sample will be determined from
(9).

Yi = Xi1β1β1β1 +Xi2β2β2β2 + εi (11)

2.3.3 Two Loci with interaction

The phenotype expression for two loci with interaction is the same as for two
loci, with an added term for the phenotype expression when both loci are present
together.

Yj = Xi1jβi1 +Xi2jβi2 +Xi1jXi2jβi12 + εj (12)

2.4 Machine Learning Models

2.4.1 Supervised Learning Steps

2.4.2 Linear Regression

The first machine learning model that we used in conjunction with SHAP was
Linear Regression. Linear Regression is a linear model that tries to fit a linear
equation to the data. We used Linear Regression first for our one loci simulation,
because our one loci simulation was a linear problem. Another factor in utilizing
Linear Regression was due to the additive nature of how features in the model

3



are used to make a prediction. With Linear Regression it is possible to determine
which features contributed the most towards to a prediction by simply looking
at the regression coefficient of a feature and the feature value itself as seen (12):

h(θ) = θ0X0 + θ1X1 + ...θnXn (13)

By manually extracting the loci that contributed the most towards a prediction,
we were able to compare how accurate SHAP was at determining causal loci.
Linear Regression served as our ground truth model due to the fact that it
offers the capability to determine the feature impacting a prediction which is
not possible to do with more complex models.

2.4.3 Random Forest Regressor

We utilized a Random Forest model fitted for regression to determine how well
non-linear regression models can perform on our simulations. Random Forest
algorithms are popular to use due to their performance and speed in making a
prediction. The parameters chosen for the Random Forest Regressor included
50 decision trees and 10 splits. Due to time constraints we did not have time
to determine what parameters would work best for our project so it would be
interesting to determine in the future what the best parameters would be for
our Random Forest model.
Another factor in deciding to use a Random Forest model has to due with
Random Forest models being compatible with TreeSHAP and SHAP Interaction
Values, both which will be discussed in following sections.

2.4.4 Neural Network

The last machine learning model that was used in this research project was a
neural network. Normally neural networks are black boxes due to their com-
plexity, which makes it difficult to determine which of features produced the
prediction made by the neural network. Even more challenging are the scenar-
ios where a neural network creates its own features in order to make a prediction
and in such scenarios determining feature importance can be a daunting task.
SHAP fortunately can extract feature importance from a neural network re-
gardless of the complexity of the model. We designed simple network with one
hidden layer in order to determine how accurate SHAP would be in the simplest
network possible. Our network had 32 nodes in the hidden layer and the input
layer and hidden layer were dense meaning they were fully connected to the
layer that followed as seen in the figure below. The results for how accurate
SHAP was when used in conjunction with our neural network for one and two
loci will be shown in the results section.
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For next steps it would be beneficial to determine how well SHAP would per-
form on a network with more layers and varying nodes in the hidden layers. It
would also be beneficial to determine the accuracy of the neural network for
larger sample sizes as due to time constraints and the slow computation time of
SHAP we were restricted to using only moderately large sample sizes.

2.5 SHAP (SHapley Additive exPlanations)

2.5.1 The Shapley Value

The SHAP software allows us to determine which features are the most impor-
tant for the prediction made by a machine learning model. Shap determines
feature importance by assigning Shapley values to each feature and features
with large Shapley values represent features that have the largest contribution
to a prediction. In order assign Shapley values to features SHAP uses (13) to
calculate a Shapley for each feature. Equation (13) calculates a Shapley for a
feature i by summing through all possible coalitions S which represents a group
of features from our total group of features N. All coalitions S are groupings
that do no include feature i. In each summation the marginal calculation of the
difference between a prediction including i and not including i will be weighted
by all possible orderings in S multiplied by the feature orderings that are still
possible to make. After summing over all possible coalitions, the sumation will
be divided by the total possible feature orderings possible. The end result is
a Shapley value for feature i which represents feature i’s contribution to the
prediction made by the model.

φi(p) =
1

n!

∑
S⊆N/i

|S|!(n− |S| − 1)!(p(S ∪ i)− p(S)) (14)
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2.5.2 Kernel SHAP

Kernel SHAP is a model agnostic method to determine SHAP values. It is
mainly used in Linear Regression, Logistic Regression, and Neural Network
models to extract SHAP values for features. Kernal SHAP is a slow method to
determine SHAP values as it uses the standard method to determine Shapley
value which a have time complexity that is 2n.In order to make calculations fea-
sible, Kernal SHAP allows data to be sampled in order to speed up calculations.
Even with sampling Kernal SHAP had a slow computation which resulted in
our simulations that used Linear Regression taking hours took complete. The
slow computation time resulted in our sample size not being too large, because
if we were to create larger genotype matrices then our computation time would
run for days.

2.5.3 Tree SHAP

Tree SHAP is fast method to extract feature values from tree based machine
learning models and also ensemble learners. The time complexity for Tree SHAP
is much faster than Kernal SHAP, taking a time of n2 to calculate SHAP values.
The faster computation of SHAP values allowed us to create larger genotype
matrices that the Random Forest Regressor could train on.

2.6 SHAP Interactions

2.6.1 SHAP Interaction Values

In our project one of the factors we were interested in discovering was whether
SHAP could detect interactions between loci. Our initial research into Shapley
values determined that Shapley values alone cannot detect interaction, because
Shapley values assume features are independent. We looked into various meth-
ods that could identify interactions between features and we came across SHAP
interaction values. SHAP interaction values are a method to detect interactions
between pairs of features using (14). Using (14) SHAP calculates a SHAP in-
teraction value for a pair of features i,j for every feature value of i and j where
in each calculation SHAP will make prediction using i and j and subtract from
that a prediction made with only i. The result will be a SHAP value that rep-
resents how feature j impacts feature i when they are together and apart. The
resulting SHAP interaction value can be negative, positive, or zero. Where a
SHAP interaction of zero represents no interaction, a positive value means that
when feature i and j are together they have a higher SHAP value, a negative
value means that that when feature i and j are together they have lower SHAP
value.

φij (p) =
1

2(M − 1)!

∑
S⊆N/i,j

|S|!(M − |S| − 2)!δij (S) (15)

δij (S) = fx(S ∪ i, j)− fx(S ∪ i)− fx(S ∪ j) + fx(S) (16)
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Using SHAP interaction values we were able to determine if interactions took
place for our simulated data. In our simulations we controlled if interactions
occurred or not, but we initially had no method to visually determine the inter-
actions. SHAP interaction values allowed for a method to plot the interactions
occurring between pairs of loci and more specifically the interactions occurring
between two causal SNP’s. With SHAP Interaction value we could determine
how different interaction scenarios that we simulated affected the prediction
made by a machine learning algorithm.
The results for the SHAP interaction values are shown in the results section.

2.7 Accuracy Testing

The accuracy of each trail of the model was determined using the SHAP values.
The highest SHAP value provides the feature with the highest effect on the
model. The accuracy of the model is tested by comparing the feature with the
highest SHAP value to the causal loci. A match indicates accuracy, a mismatch
indicates a mistake.
The accuracy is measured for two overarching cases, Value of Genetic Effect
and Variance of genetic effect. For value of genetic effect the genetic effect is set
at a specific β value, this represents the best case scenario with the maximum
genetic effect. For variance of genetic effect the β value is obtained from (5),
this represents the real world scenario where the β value is normally distributed.

2.7.1 One Causal Loci

Random Forest Regression, Linear Regression and Neural Network machine
learning models were run on phenotype data affected by one causal loci. The
accuracy for each test was measured by providing 1 for a correct match and 0
for an incorrect match. The accuracy test for 100 trials is run for different σ2

e

and σ2
g combinations.

1Accuracy

{
1 Feature with highest SHAP = Causal Loci

0 Feature with highest SHAP 6= Causal Loci
(17)

2.7.2 Two Causal Loci

For our simulations for two causal loci with and without interactions we de-
termined the accuracy of SHAP by measuring the times SHAP got both loci
wrong, both loci right, and only one one loci right when using Random Forest
Regression, Linear Regression and Neural Network models. When SHAP got
both causal loci right it counted right it counted as 1, half right counted as .5,
and both wrong counted as 0. We then added up the different counts across
multiple simulations and then divided by the total number of simulation to give
us the accuracy for a specific variance of genetic effect.
An alternative to view the accuracy of SHAP was to make a bar plot showing
the percentage of the times SHAP got both causal loci wrong, one right, and
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both wrong for multiple interaction scenarios. Showing the percentage of how
SHAP performed gave us a better understanding on how well our models are
constructed, whether we are providing enough data, and the limations of SHAP
determining causal loci in more complex scenarios.

3 Results

3.1 SHAP Accuracy

Random Forest Regressor One Loci, Set Genetic Effect
Testing the effectiveness on SHAP with Random Forest Regressor with the set
value of genetic effect shows that in the best case scenario RFR is above 80
percent for all environmental noise levels after a genetic effect of 0.2.

Random Forest Regressor One Loci, Set Varient Effect
Testing the effectiveness on SHAP with Random Forest Regressor with the
variance of genetic effect shows that in the real world scenario RFR is above
80 percent accurate for all environmental noise levels after a genetic variance
of 0.6. For environmental noise levels less than 0.4 the accuracy is above 80
percent after a genetic variance of 0.1.
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Linear Regression One Loci, Set Genetic Effect
Testing the effectiveness on SHAP with Linear Regression with the set value of
genetic effect shows that in the best case scenario LR is around 90 percent for
all environmental noise levels after a genetic effect of 0.2.

Linear Regression One Loci, Set Varient Effect
Testing the effectiveness on SHAP with Linear Regression with the variance
of genetic effect shows that in the real world scenario LR is above 80 percent
accurate for environmental noise levels below 0.8.
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Neural Network Result One Loci Set Environmental Noise
Here we plotted how SHAP performs at detecting one causal loci when the vari-
ance for the environmental noise is set.

Neural Network Result One Loci Varied Environmental Noise
Here we plotted how SHAP performs at detecting one causal loci when the vari-
ance for the environmental noise varies for multiple values.
When the environmental noise is set for one loci
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SHAP Accuracy for two loci
Random Forest Regressor accuracy for two loci
Here we plotted the accuracy of SHAP for two loci when there were no interac-
tions between the the two SNPS. Both plots have 1000 samples and 20 loci.Here
β1,2 was equal to zero. Each variance is run 100 times each.

The first plot shows the accuracy when ej is set

The second plot shows the accuracy when ej varies and is a more accurate
representation of the accuracy

Neural Network accuracy for two loci
Here we plotted a 2000x20 genotype matrix to a neural network. In this
scenario the the batch size was 16, epochs 50 and each variance parameters
was run 100 times. Here the environmental noise was set so it did not vary
for multiple values. We plotted for multiple variances how well SHAP when
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used on neural networks is at detecting two causal loci. Here β1,2 was zero
because SHAP interaction values are not compatible with neural networks.

Here the same parameters as before but now the environmental noise is var-
ied which means this plot is a more true representation of how well the neural
network would perform for multiple environmental noises.

3.2 SHAP interaction value plots

The following plots shows the SHAP interaction values for both SNPS across
different variances for genetic effect and for different interaction scenarios for
β1,2. Each plot was made for 5000 samples and 100 loci and each variance was
run for 100 trials. The red squares represent the average SHAP interaction value
and the orange line represents the median of the interaction values.The whiskers
extending from the box plot represent the full range of the SHAP interaction
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values.

β1,2 = 0
Here we plotted the interactions between SNPS when there should be no in-
teraction occurring. It can be immediately some interactions are occuring even
there should be none, this will be discussed in the discussion section.

βββ = N(0, σ2
gIII)

Here we plotted the interaction between SNP’s when β1,2 comes from a a ran-
dom normal distribution with some variance.

0 < β1,2 < β1
Here we plotted the interaction between SNP’s when β1,2 is less than β1
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0 < β1,2 < β2
Here we plotted the interaction between SNP’s when β1,2 is less than β2

β1+β2 < β1,2
Here we plotted the interaction between SNP’s when β1,2 is greater than both
β1 and β2
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β1,2 < 0
Lastly we plotted the interaction between SNP’s when β1,2 is less than 0
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4 Discussion

For single Loci SHAP shows a high level of accuracy and a high tolerance for
environmental noise. However, the question still remains as to why the machine
learning models do not have perfect accuracy at 0 environmental noise. This is
an area to explore in the future, by both checking the models for their pheno-
type prediction accuracy and then testing SHAP.

For the accuracy of SHAP at identifying two causal loci we found that for
Random Forest Regressor and Neural Networks, SHAP performed poorly at
identifying the correct loci. This could be due to a few reasons, one being
maybe not enough data is provided to the machine learning models or that the
parameters of the models themselves need to tuned to make the model more
optimal for the data. Another reason could be due to the nature of our prob-
lem in that we developed a regression problem, but Random Forest and Neural
Networks are often used for classification. A future step could be run all our
models again and only use binary traits to determine SHAP accuracy.

In our research we found an interesting finding for detecting loci interactions.
Namely that even when we set β1,2 equal to zero we still see some interactions
taking place. This could be due to not enough samples, but we did make the
samples equal to 5000 which is a fairly large sample. Another possibility is that
SHAP is limited at determining interactions. SHAP interaction values are based
on Shapley values which could mean that that due to Shapley values assuming
features are independent there could be some noise being introduced by SHAP
when calculating the interaction values between loci. It would be interesting to
determine how the noise is introduced either by trying larger sample sizes or by
performing statistical analysis on SHAP interaction values in order to under-
stand their limitations.

For next steps we also need to develop more complex simulations that are
more similar to real data. Introducing linkage disequilibrium into our simu-
lation would be a good way to further determine the accuracy of SHAP in more
complex simulation besides just interactions between loci. We could also try
Neural Networks with more than one hidden layer in order to determine how
well SHAP is at determining casual loci in a truly deep network.

Further study into SHAP values should also be done to attempt to determine
the causal loci in the case where the number of causal loci is unknown.
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