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ABSTRACT 

Improving EMG Classification Accuracy with Relative Entropy 

By 

Kevin Osvaldo Delao 

Currently the Degrees of Freedom (DoF) possible from an Electromyography 

(EMG) controlled prosthetic arm is low due to the challenge of classifying movements. 

Low DoF leads to prosthetics having limited capabilities in their applications for 

rehabilitation. Machine learning algorithms offered the potential to improve the accuracy 

of identifying movements from an EMG dataset, but even still accuracy for identifying 

EMG movements remains low. Part of the reason as to why classification accuracy 

remains low is due to the shortage of publicly available algorithms for EMG 

classification, which prevents experienced computational researchers from tackling the 

challenge of classification accuracy. Additionally, EMG movements recorded from non-

invasive electrodes tend to overlap due to similarities in signals properties. Movement 

overlap in turn creates difficulties for machine learning models to properly identify 

movements in an EMG dataset. This work will present research in order to begin to 

develop a publicly available set of machine learning algorithms for EMG classification 

that uses the Kullback-Leibler Divergence (KLD) to reduce movement overlap. By 

applying KLD to resolve signal overlap and create optimal movement orderings per 

patient we take steps at improving the classification accuracy of movements from EMG 

data. Achieving a five percent increase in classification accuracy across fifty movements 

for both amputated and non-amputated patients shows the promise of KLD at improving 

the DoF possible with an upper limb prosthesis. 
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CHAPTER 1 

Introduction 

Surface Electromyography (sEMG) classification has historically been a task that 

required a great deal of effort to accomplish [2]. When sEMG recordings were first 

utilized to record electrical signals from muscles, machine learning algorithms were not 

as widely utilized as today. Researchers were originally required to spend large amounts 

of time carefully inspecting a sEMG signal to determine which movements were 

occurring in various parts of the signal [6]. Researchers in the field of neural prosthesis 

were especially hindered by the time-consuming nature of sEMG analysis, because there 

was no method to create an autonomous algorithm that would be able to quickly 

recognize sEMG signals and translate them to movement commands that a prosthetic 

device could then replicate. 

The introduction of machine learning finally allowed researchers to have a fast 

and autonomous method to analyze large amounts of sEMG data. Prosthetic researchers 

utilizing machine learning were able to create algorithms capable of classifying small sets 

of movements from sEMG recordings with high accuracy. Various papers began to 

publish results stating that classification accuracies of over ninety percent have been 

achieved when using machine learning for sEMG classification [17,21]. While the results 

in these papers were promising, the problem was that the methods used in such research 

papers were difficult to replicate. Research groups did not make their algorithms publicly 

available and the sEMG data they worked with could not be released due to the privacy 

of patients. This meant that other research teams working on sEMG movement 

classification had to essentially start from scratch to develop machine learning algorithms 



 

 2 

to classify their data. The inability for research teams to replicate each other's work also 

meant that performance for sEMG classification could not be compared due to sEMG 

recordings drastically varying depending on setup and patient. 

 The NinaPro Project introduced one of the first publicly available sEMG 

databases that allowed researchers to finally have a method to compare classifier 

performance. The NinaPro Project consists of nine databases each containing recordings 

from 10-40 patients performing between 30-53 different hand movement variations [3]. 

Each of the databases have been described in detail in terms of acquisition protocol and 

have been validated to ensure that the sEMG data present is usable for machine learning 

classification [3]. The creators of the NinaPro Project hoped that by having a publicly 

available source of sEMG data, computational researchers would be able to build 

algorithms for movement classification and have a benchmark to compare against. One 

reason why having a benchmark for sEMG classification is important is that currently the 

movement classification accuracy for sEMG data containing more than twenty movement 

variations is low [3]. Having a publicly available sEMG database was meant to allow 

researchers to build upon each other's work in order to eventually build a classifier able to 

distinguish between many movements with high accuracy.  

 An issue that concerns the classification of movements within sEMG data is the 

accessibility of code. The introduction of the NinaPro Project finally allowed researchers 

to have publicly available sEMG data, but it is still rare for researchers to make their code 

accessible to anyone. This is in stark contrast to other fields of research such as Natural 

Language Processing or Image Recognition where there are many code tutorials 

describing in detail on how to use machine learning to recognize text or images. The lack 
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of any publicly available algorithms for sEMG classifications creates a barrier preventing 

novice and veteran researchers from trying to tackle the problem of sEMG classification. 

Another issue that concerns sEMG movement classification is the variability and 

separability between movements. Humans produce unique sEMG signals that are 

different from any other person [6]. This variability that exists between sEMG signals 

causes problems for machine learning algorithms, because a machine learning algorithm 

that trains on one patient's sEMG data may not perform well on another patient's sEMG 

dataset. Within patient variability is also a concern for sEMG classification, because as 

the number of movements to classify increases so does the overlap between movements 

[1]. In order to improve the classification accuracy for sEMG data, variability and 

overlap need to be considered when using machine learning to classify movements from 

EMG data. 

 The work presented here will go over the research conducted which aims to 

establish a publicly available set of algorithms for sEMG classification. Part of what this 

project aims to achieve is to have a heavily documented set of algorithms for sEMG 

classification that will allow other researchers to utilize the code for prosthetic training or 

to build upon the algorithms for their own research. The other aim of this project will be 

to improve sEMG classification accuracy by utilizing the Kullback–Leibler divergence 

which has seen success in sound research to separate sound patterns [4]. Additionally, 

this thesis will extend past work on applying the Kullback–Leibler divergence to EMG 

data in order to improve classification accuracy [22]. The Kullback–Leibler divergence 

will be used to create machine learning algorithms that will consider the variability 

between patients, while also maximizing the separability criteria in order to reduce the 
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overlap between movements [11]. The exact details of how the Kullback–Leibler 

divergence is used to improve sEMG classification will be discussed in Chapter 4. 

The work will be organized as follows: Chapter 2 will discuss the sEMG data that 

will be used, namely databases one and three of the NinaPro Project. Chapter 3 will go 

over data preprocessing such as filtering, windowing, feature extraction, and gesture 

identification that will be performed on the sEMG data. Chapter 4 will go over in detail 

the machine learning algorithms that will be used and why they were chosen. Chapter 5 

will go over the results obtained from the classifiers. Chapter 6 will discuss the research 

results. Lastly, Chapter 7 will go over the conclusions for the research conducted for this 

thesis. 
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CHAPTER 2 

Data Information 

In order to build a classifier capable of distinguishing between movements in an 

sEMG dataset, the sEMG data used for training and testing needs to be valid. If the 

sEMG data used for classification was not replicable in real world recording setups, then 

the classifier performance on said dataset would be useless. Fortunately, the NinaPro 

Project has been thoroughly validated to ensure that each of the recording setups used to 

record the sEMG data stored is replicable in the real world [3].  

The databases that will be used in this work will be databases one and three of the 

NinaPro Project. Only two databases were used due to the long computation required for 

each database and time constraints. Each database differs drastically in terms of setup and 

recording protocol and as such each database will be described in detail in this section to 

ensure that differences between their acquisition and experimental protocols are 

conveyed. Additionally, Database 2 was discussed briefly as well due to its data overlap 

with Database 3. 

Database 1 Analysis 

Database 1 in the NinaPro Project was the first attempt at creating a publicly available 

sEMG database. The database consists of sEMG recordings from twenty-seven intact 

patients performing fifty-two hand movement variations. The actual sEMG recordings 

were collected using ten active double differential OttoBock MyoBock 13E200 sEMG 

electrodes which were placed on various muscles on the arm [2]. Specifically, eight 

electrodes were placed around the forearm and two electrodes were placed on the 

extensor and flexor muscles of the forearm [2]. The sEMG signal recorded by the 
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electrodes is a raw sEMG signal, but the actual sEMG recordings stored on NinaPro are 

not raw signals [2]. The OttoBock MyoBock electrodes provide signals that are bandpass 

filtered and Root Mean Rectified meaning that the sEMG signals stored do not contain 

negative values. Rectification is conducted on sEMG signals because often features are 

extracted from sEMG data that require taking the average [2,6]. If negative sEMG values 

are present, then the average of the sEMG signal will be zero. 

Kinematic hand and wrist data were collected using a 22-sensor CyberGlove II 

dataglove and a 2-axis Kubler IS40 inclinometer [2]. Kinematic data was recorded to 

allow researchers to use data to study the position of the movements conducted by the 

patients and to use the kinematic data as ground truth. Ground truth is needed because 

sEMG signals are inherently noisy so in order to determine what movement a patient 

conducted at a given time, kinematic data is needed for verification. 

The acquisition protocol for the electrodes and inclinometer were acquired at a 

constant interval of 100Hz using a DAQ (Digital Acquisition) card [2]. The Cyberglove 

was recorded over a Bluetooth-tunneled serial port at 25Hz [2]. 

The experimental protocol for the movement exercises consisted of the twenty-

seven patients replicating movements seen on a screen that were divided into three sets as 

seen in Figure 1. The movements were twelve finger movements, eight isometric and 

isotonic hand configurations, nine wrist movements, and twenty-three grasping 

movements [2]. Exercises consisted of each patient performing ten repetitions for each of 

the fifty-two movements [2]. Each repetition lasted for five seconds and was followed by 

a three second rest period. The rest period was not classified as a movement, but it is 
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classified as a movement by the machine learning algorithm which will be discussed in 

Chapter 4.  

 
Figure. 1. Database 1 Movements 

Database 2 Analysis 

The second database in the NinaPro database is like database one but differs in 

some aspects of the acquisition and experimental protocol. One immediate difference in 

the acquisition protocol of database 2 is that movements were recorded using Delsys 

double-differential sEMG electrodes instead of OttoBlock electrodes [3]. The 
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experimental protocol differed in that database 2 contained forty intact patients in total 

and each patient performed fifty movements [3]. Demographics of the patients in 

database 2 were also different in that database 2 contained forty intact subjects consisting 

of twenty-eight males, twelve females, thirty-four right-handed, six left-handed, and ages 

of 29.9±3.9 years [3]. It is unknown how much of a difference the ratio of male to female 

will affect classifier performance as Body Mass Index (BMI) has been shown to affect 

sEMG recording accuracy [1]. 

 The experimental protocol for movements exercises was like database 1. Patients 

performed movement exercises by replicating the actions they saw on a screen. Each 

exercise had six repetitions and there was a rest period between each repetition. The 

movements chosen for database 2 involved various grasping and flexions as seen in 

Figure 2 [3]. Figure 2 contained various grasping and hand extensions. 

 
Figure. 2. Database 2 and 3 Movements 
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Database 3 Analysis 

Database 3 of the NinaPro Project was the first of the databases to include trans-

radial amputee patients as opposed to just intact patients. This was vital because 

amputees differ greatly in terms of the nerve endings present in the arm muscles. Trans-

radial amputees have far less nerve endings in their arm muscles due to surgery and as 

such the sEMG recordings from amputees are much noisier [3]. Regardless of the 

increased noise present for amputees, it is nonetheless crucial to include amputees in 

sEMG recordings. The reason being is that if researchers want to develop more advanced 

prosthetic devices for amputees, then it is imperative to have an algorithm capable of 

classifying the sEMG data for amputee patients.  

 Currently non-invasive myoelectric prosthetic devices are some of the most 

popular prosthetic devices to use for amputee patients due to their non-invasive 

application, but myoelectric prosthetics suffer from only being able to perform a limited 

range of motions. Part of the reason why motions are limited is due to low classification 

accuracy for sEMG data from amputee patients. Having a publicly available benchmark 

for sEMG data for amputees will allow for the development of algorithms capable of 

classifying sEMG with higher accuracies and lead to more advanced prosthetic devices 

capable of more complex movements. 

 The database itself is similar to database 2 in that it involves using 12 Delsys 

double-differential sEMG electrodes for the recordings [3]. Database 3 also involves the 

same fifty movements seen in Figure 2. Repetitions per movement were also like 

database 2 in that each patient performed six repetition per movement with rest in 

between each movement. 
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 The main differences for database 3 are in the demographics of the patients and 

the experimental protocol. Database 3 only includes eleven amputee patients, with each 

patient varying in type of amputation as seen in Table 1 [3]. 

TABLE 1. DATABASE 3 PATIENT DEMOGRAPHIC 

Subject Amputated 

Hand 

Remaining 

Forearm (%) 

Years Since 

Amputation 

Phantom Limb Sensation (0-

5) 

1 Right 50 13 2 

2 Left 70 6 5 

3 Right 30 5 2 

4 Right and 

Left 

40 1 1 

5 Left 90 1 2 

6 Left 40 13 4 

7 Right 0 7 0 

8 Right 50 5 2 

9 Right 90 14 5 

10 Right 50 2 5 

11 Right 90 5 4 
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Due to amputated patients missing their upper limb, repetitions were performed 

by a patient thinking of the movement they saw on the screen. It is important to note that 

ground truth data is not possible with amputee patients as they cannot operate sensors 

such as the CyberGlove on their missing limb [3]. In order to circumvent the problem of 

ground truth data, database 3 chose to have the stimulus serve as ground truth data [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 14 

CHAPTER 3 

Data Preprocessing 

In order to prepare the sEMG data for classification, several preprocessing steps 

need to be taken. Filtering for noise removal, windowing, feature extraction, and gesture 

identification are a few of the steps needed to be able to pass the sEMG data through a 

machine learning algorithm. This chapter will go over in detail each of the processing 

steps taken and why they were chosen.  

Noise Sources 

 In order to discuss the use of filtering methods, it is first crucial to understand 

where noise sources come from for sEMG recordings. As mentioned previously one of 

the main drawbacks of using sEMG for muscle recordings is the large amount of noise 

present in the signal. The type of noise in sEMG signals has been heavily documented in 

the past by other researchers in order to categorize the types of noise that sEMG signals 

are prone to. The first type of noise that sEMG signals are prone to is electrical noise also 

called inherent noise that originates from electrical equipment [8]. Inherent noise is 

mainly removable through the design of the hardware used for recording, but some filters 

can help deal with the noise. The filtering method used to remove this type of noise will 

be discussed in the filtering section. 

 Movement artifacts is another type of noise that is heavily present in sEMG 

recordings. Movement artifacts is a type of noise that originates from the cables that 

connect the sEMG electrodes to the amplifier and the contact between the electrodes 

themselves and skin [8]. Normally preparation such as cleaning or shaving of the skin is 

performed to prevent movement artifacts from occurring. This type of noise was not 
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possible to remove through software alone in this project, so it was not focused on for 

filtering methods. 

 Electromagnetic noise originating from the body and from the environment is 

noise that is present in all sEMG signals regardless of the quality of the recording setup. 

In order to properly deal with electromagnetic noise often a high pass filter is utilized [8]. 

Database 1 had its useful information in the low frequency band of 0-25Hz so a high pass 

filter to remove electromagnetic noise was not needed for database 1. 

 Another source of noise that is common in nearly all sEMG recordings is muscle 

crosstalk. In the simplest terms muscle crosstalk is an sEMG signal from an unwanted 

muscle group [8]. The sEMG signals from muscle groups that are not being focused on 

can interfere with the sEMG signals of interest and can lead to incorrect analysis of the 

sEMG signals. The main method to remove muscle crosstalk is in the design and 

placement of the electrodes. Filtering methods have almost no effect on the removal of 

muscle crosstalk and because of this no filtering methods were used in the removal of 

muscle crosstalk in this project [8]. 

 Electrical activity from the heart also called Electrocardiogram (ECG) can also 

interfere with sEMG signals. Placement of electrodes closer to the trunk and shoulder 

muscles can lead to an increase in ECG signals that can contaminate the sEMG signals of 

interest. Placement of electrodes on the arm muscles as was done in database 1-3 can still 

be affected by ECG artifacts. One of the main difficulties in removing ECG noise is that 

ECG signals tend to overlap with sEMG signals making it hard for filtering methods to 

recognize and remove ECG artifacts [6]. There have been suggestions to remove ECG 

artifacts by using a high pass 100hz filter, but because sEMG signals in database 2 and 3 
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contain relevant information in the 100hz range a high pass filter was not used for 

database 2 and 3 [8]. Database 1 has relevant information in the low frequency domain, 

so ECG noise was not a concern for database 1. 

Filtering Steps 

As mentioned previously the sEMG signals stored for database 1 are not raw 

sEMG signals. The sEMG signals for database 1 contain signals that have been bandpass 

filtered and root mean squared (RMS) rectified [1, 2]. What this prefiltering entails is that 

the sEMG signals for database 1 contain signals that have a bandwidth of between 0-

25Hz. Normally raw sEMG signals have a bandwidth of 15 to 500Hz, so the bandwidth 

for database 1 is much smaller [6]. An RMS rectified signal means that the signal does 

not contain any negative values as all raw sEMG contain. Due to the prefiltering onboard 

the OttoBlock electrodes the relevant information for the sEMG signals in database 1 lie 

in the low frequency spectrum band [9]. In order to remove noise from the signal and 

remove any high frequency noise that originates from electrical equipment, a low pass 

second order Butterworth filter with a cutoff frequency of 5Hz was used for each of the 

ten channels. Butterworth filters have long been used methods to remove noise from 

sEMG signals as Butterworth filters seem to be able to remove sEMG noise without 

distorting the signal [16]. As can be seen from Figure 3 there is a drastic reduction in the 

noise present after the Butterworth filter was passed through each channel. Figure 3 was 

generated by applying a low pass 5Hz Butterworth filter to an EMG signal from a patient 

from database 1. The Butterworth filter removed any EMG signals above 5Hz and the 

Butterworth filter also smoothed out the EMG signal to remove unnecessary EMG 

activity. 



 

 17 

 

Figure. 3. Database 1 Filtering 

Database 3 requires a few extra filtering steps as opposed to database 1, because 

database 3 contains raw sEMG data. The sEMG data in database 3 had to be rectified first 

in order to allow for the extraction of features that take the mean of the signal. The 

absolute value of the signal was taken in order to fold over the negative sEMG values to 

the positive domain as seen in Figure 4. Figure 4 was generated by taking the absolute 

value of the EMG signal of a patient from database 3. For Figure 4, only a portion of the 

EMG signal is shown in order to make it easier to visualize taking the absolute value of 

the EMG signal. 
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Figure. 4. Database 3 Rectification 

The next step in processing the sEMG data for database 3 involves the removal of 

the noise present in the signal. Like database 1 a Butterworth filter with a cutoff 

frequency of 500Hz was applied to the signal as seen in Figure 5. Figure 5 was generated 

by applying the Butterworth filter to the EMG signal of a patient from database 3. The 

Butterworth filter caused EMG signals from database 3 to be smoothed out by reducing 

unnecessary EMG activity for signal analysis. Additionally, the 500Hz cutoff meant that 

the EMG data for database 3 that was above 500Hz was removed and this was justified as 

raw EMG signals have important information below 500Hz [6]. The reason for the 500Hz 

cutoff frequency is due to the sampling rate for database 3 being 2kHz. After the 

application of the Butterworth filter, there is an immediate reduction to the noise present. 
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Figure 5. Database 3 Filtering 

Windowing 

To properly analyze the sEMG data in database 1, the sEMG signals need to be 

segmented into continuous windows. Windowing is needed, because sEMG data contains 

continuous movements. In order to determine what activity a given part of a sEMG signal 

corresponds to, not just one segment of an sEMG signal can be focused on. Following 

well known windowing techniques, the sEMG data in database 1 were segmented into 

400 millisecond(ms) windows with an increment of 10ms [15]. Other popular window 

lengths include 100ms and 200ms windows [2,23]. Care does need to be taken when 

selecting a window length as bigger window lengths introduce more noise, but too small 

a window length can lead to misclassifications. A 400ms window length provides ample 

representation of the movement occurring in part of a signal without much noise being 

introduced. After the sEMG data of all twenty-seven patients were segmented into 400ms 

windows, the sEMG data was ready to be used for gesture identification and feature 

extraction. 
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Feature Extraction 

The common features for sEMG signals can be divided into three main groups: 

time domain features, frequency domain features, and time-frequency domain features 

[18]. Features related to time for sEMG signals capture information related to the 

amplitude of the sEMG signal. Frequency domain features on the other hand capture 

information related to the frequency characteristics of the sEMG signal [18]. For time 

domain features there are currently thirteen well known features that are utilized for 

sEMG movement classification, for this project three-time domain features were chosen 

for classification [13]. Specifically mean absolute value, variance, and root mean square 

were the time domain features chosen due to their simplicity and performance in other 

literature [2]. Time-domain features are the most popular features to use for sEMG 

classification because they are easy to compute and do not require a transformation of the 

sEMG signal [18]. The drawback of using time-domain features is that they reduce 

sEMG signal information to scalar values, which leads to a loss of information [2]. Even 

with loss of information simple time-domain features have been shown to perform as 

well or better than more complicated frequency and time-frequency domain features [2]. 

The actual extraction of time-domain features was extracted from the windowed 

data by taking the mean absolute value, variance, and root mean square of 400ms 

windows across ten channels for database 1 and twelve channels for database 3. The 

feature data was then saved for later use when it will be used to calculate the movement 

ordering per patient and for the training of the machine learning algorithms. 
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Gesture Identification 

The sEMG data for database 1 was prelabeled using an offline labeling 

calculation that determined which of the fifty-two movements including rest were 

occurring every 10ms [2]. As mentioned previously a single 10ms segment of movement 

is not enough to determine what movement action is occurring during a longer period. In 

order to properly determine what movement a patient performed during a timespan, 

majority voting was used to identify every 10ms window as belonging to a single 

movement in a 400ms window. Each 10ms second window was identified as belonging to 

either one of the fifty-two movements from database 1 or forty-nine movements from 

database 3 or rest, by taking a majority vote in a 400ms window length. The movement 

that had the most votes in the 400ms window was then assigned as the movement that 

occurred in that window. Increments of 10ms were continuously repeated until the end of 

the sEMG data, where in each increment majority voting in a 400ms window length were 

calculated and assigned to every 10ms segment.  
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CHAPTER 4 

Machine Learning Classification 

Kullback–Leibler Divergence 

 One of the issues for the classification of sEMG data containing many movements 

is the overlap between movements. Overlap leads to a poor classification boundary which 

in turn leads to low classification accuracy. In order to increase the movement 

separability there needs to be a method to be able to distinguish how similar movements 

are in each movement group. The Kullback-Leibler Divergence (KLD) that comes from 

the field of mathematical statistics will allow for the measurement of how similar 

movements are from each other and allow for a movement ordering that is specific per 

patient [24]. 

Using KLD made calculations that determine similarities between movements 

quicker as distributions can represent complex data in a simpler manner. Working with 

movement EMG data itself to determine optimal movement ordering per patient would 

have been much more computationally intensive as every possible movement pairing and 

movement comparison would have needed to be calculated to determine the most optimal 

movement ordering per patient.   

Before describing how KLD will be utilized for movement separability, KLD 

needs to be described in terms of what it does. At its core KLD determines how one 

probability distribution differs from another expected distribution [19]. The measure of 

how different two distributions are or how one distribution resembles another is measured 

through divergence. The value of the divergence between two probability distributions 

calculated in Figure 6 will determine how similar the two distributions are. In Figure 6 
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P(x) represents the primary distribution where P is the distribution representing some data 

x. Q(x) is the reference distribution which approximates the information represented by 

P(x). Figure 6 will calculate a divergence value between P(x) and Q(x) by calculating the 

log difference between P(x) and Q(x) which will generate D where D represent the 

divergence between P(x) and Q(x). If two distributions match perfectly then the 

divergence value D will be zero and the closer the divergence value is to zero, then the 

closer two probability distributions are. 

𝐷𝐾𝐿(𝑃||𝑄) =  ∑ 𝑃(𝑥)log (
𝑃(𝑥)

𝑄(𝑥)
)

𝑥∈𝑋

 

Figure 6. Kullback-Leibler Equation 

 Normally divergence is used for modeling to make sure that one distribution 

matches another in terms of the information it represents, but KLD can also be used for 

separability. Normally movements from sEMG recordings are added one at a time to a 

pool of movements in which a classifier creates a boundary to identify different 

movements [1]. In one of the first papers by the creators of the NinaPro Project, 

movements were added in a sequence starting from rest [1]. Adding movements in a 

sequence may seem like the most optimal method for classification, but patients often 

perform movements better or worse than each other. In order to properly address the 

varying performance for movements between each patient, movements should be added 

more selectively to a movement group.  

To ensure that separability between movements is maximized, it is more optimal 

to add new movements to a movement pool by how much they differ from the 

movements already selected. Normally it would take far too much time to compare every 
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already selected movement to every new movement we wish to add, but distributions 

allow for the representation of large amounts of data using a minimum amount of 

information. Using KLD we can create a single distribution to represent the movements 

already selected for classification and compute the divergence between the selected 

movement distribution to each of the not yet selected movement distributions. After 

computing the divergence, instead of choosing the not yet selected movement distribution 

with the smallest divergence we can instead pick the not yet selected movement with the 

largest divergence and add that movement next to the movement pool. The justification 

for choosing to add the not yet selected movement with the largest divergence value is 

due to the divergence value representing similarity between distributions as mentioned 

previously. If a movement holds a large divergence value then that would indicate that 

the two distributions do not match, but it also means that the information represented by 

the distributions are different. This is vital because movements that hold different 

information from each other will have less overlap. A movement that had the largest 

divergence value would differ the most from the already selected movements and would 

lead to a less chance of overlap when added to the movement pool for classification. 

 The process of computing the divergence between the selected movement 

distribution and each of the not yet selected movement distributions and then choosing 

the movement with the largest divergence to add is continued until there are no more 

movements left to add. By using KLD, each patient will have a unique ordering of 

movements as seen in Figure 7 that will ensure a decrease in movement overlap which 

will in turn lead to improved classification accuracy. Figure 7 shows the order in which 

movements are added to a group for machine learning classification for database 1. 
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Figure 7 is just an example showing that KLD will generate an ordering to add 

movements to a group for every patient, where the orderings will ensure that movements 

added initially have less of a chance of overlapping and all movements that do cause 

overlap are added last to a group for classification. 

 

Figure 7. Database 1 KLD Ordering 

Environment 

Before discussing the machine learning classifiers used in this project, it is first 

important to go over the language and environment used to create this project. MATLAB 

version 2019b was the sole coding language used to create this project. The reason why 

MATLAB was chosen over other coding languages is because the default format for the 

sEMG data from the NinaPro Project are MATLAB files. The MATLAB version used in 

this project also included the Machine Learning and Deep Learning ToolBox as well the 

Signal Processing ToolBox which were both required for filtering and machine learning 

classification. As mentioned previously the code used in this project will be made public 

on GitHub, but in order to be able run the code properly it is important to make sure that 

the ToolBoxes installed, and MATLAB versions are similar. 
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Machine Learning Classifiers 

For database 1 because there were only ten repetitions that served as the train and 

test data, care needed to be taken in deciding how to split the data. Papers have 

mentioned that depending on how the data is split for sEMG recordings, there could be 

potential differences in classification results due to patients adapting to movements [3]. 

However, these papers also mention that adaptation to movements is rare and only 

impacts a few patients [3]. In order to compare the results of KLD ordering to the original 

ordering of movements seen in the first paper by the NinaPro Project, a split for database 

1 was chosen using repetitions {1 3 5 7 9} as the training set and repetitions {2 4 6 8 10} 

as the testing set [1]. This partition for training and testing was chosen based on the 

methodology performed from previous work [1]. The split itself was chosen because 

adjacent repetitions run the risk of EMG overlap, thus to avoid signal overlap only every 

other repetition was chosen for training and testing [1]. For databases 3, the split was 

randomly selected where four out of the six repetitions were chosen for training and the 

remaining two repetitions were used for testing. 

It is important to note that due to the rest movement representing a large portion 

of the movements, rest movements were randomly down sampled so that it only 

represented as many movements as the next most common movement. Random down 

sampling of the rest movement was done for databases 1 and 3 in order to not have a 

large bias for rest. 

After the data was split and random down sampling was applied, the data was 

passed into six classifiers. Namely K-Nearest-Neighbor (KNN) with K equaling ten, 

Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) with a Radial 
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Basis Function (RBF) kernel, Linear SVM, Decision Tree (DT) with 150 splits, and 

Random Forest (RF) with fifty splits. KNN with a K value of ten was chosen based on 

the popularity of using ten as a standard. LDA was set up with the default parameters 

MATLAB provides as LDA is a simple linear classifier. SVM was set up with the 

multiclass one vs one parameter because SVM used a linear kernel. RBF was set up with 

the multiclass one vs all parameter as RBF kernels try to establish a classifier using all 

the data provided. DT was chosen with 150 splits because having many splits in decision 

trees leads to better classification accuracy results. RF was chosen to have 50 decision 

trees simply based on my past experience using RF with a moderate amount of decision 

trees for classification. The justification for choosing six standard machine learning 

classifiers over a Neural Network (NN) is because part of what the project aimed to 

achieve is to have a simple solution to a complex problem. Specifically, machine learning 

algorithms, that offer great performance and are easier to understand than NN’s, will 

allow for computational researchers to more easily understand the code and more quickly 

utilize the code. Another reason why machine learning algorithms were chosen over 

NN’s is because NN’s require more data in order to have higher performance when 

compared to machine learning algorithms.  

The results for the six machine learning algorithms after training on the training 

set and then testing on the testing set will be discussed in the following Chapter 5. 
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CHAPTER 5 

Data Results 

Database 1 Results 

Using Mean Absolute Value (MAV) as the feature for the dataset from database 

1, adding movements in a sequence resulted in most of the six classifiers having an 

accuracy on average of below seventy percent as seen in Figure 8. Adding movements in 

sequence resulted in accuracy that was consistent with the results from the first paper of 

the NinaPro Project [1]. With the KLD movement orderings seen in Figure 9, classifiers 

had an improved accuracy for nearly every movement except for movements forty-five 

and onwards which had similar results as movements ordered in a sequence. KLD 

movement ordering resulted in an average improvement of four percent when looking at 

movements 20-45. The reason for this similar performance had to do with the fact that 

movements that cause overlap are being eventually added to the end for classification 

which results in KLD ordering no better than sequential movement orderings. 

 

Figure 8. Database 1 Sequential MAV Feature 
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Figure 9. Database 1 KLD MAV Feature 

 Comparing the best performing classifier of both movement sequence ordering 

from Figure 8 and the KLD movement ordering from Figure 9, Random Forest (RF) can 

be seen to have improvements in accuracy for every movement as seen in Figure 10. 

 

 

Figure 10. Database 1 Sequential and KLD Comparison 
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Using Root Mean Squared as the feature for classification, an identical 

performance to MAV for sequential movement ordering was seen as shown in Figure 11. 

Similarly, the KLD ordering of movements using RMS as the feature gave similar 

performance to MAV as seen in Figure 12. The significance of why two different features 

gave almost identical performance will be discussed in the following section. Comparing 

KLD and sequential movement ordering using RMS as a feature still showed KLD 

ordering giving a higher classification accuracy as seen in Figure 12.  

 

Figure 11. Database 1 Sequential RMS Feature 
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Figure 12. Database 1 KLD RMS Feature 

Lastly using Variance (VAR) as the feature for classification gave a different 

accuracy performance for database 1. As seen in Figure 13 there is a lower accuracy 

using VAR as the feature for all six classifiers.  Regardless of the decreased performance 

seen using VAR in the Sequential movement ordering, KLD still showed improved 

accuracy for the six classifiers as seen in Figure 14. Specifically, RF from KLD orderings 

performs much better than sequential movement orderings and still performs the best 

from the classifiers. Comparing RF from sequential and KLD movement orderings in 

Figure 15, we see an almost ten percent improvement to accuracy using KLD movement 

ordering as opposed to the standard sequential movement ordering. 
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Figure 13. Database 1 Sequential VAR Feature 

 

Figure 14. Database 1 KLD VAR Feature 
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Figure 15. Database 1 Sequential and KLD Comparison VAR  

Database 3 Results 

 Using MAV on Database 3, we see that for sequential movements there is much 

lower accuracy overall when compared to non-amputated patients. The reason as stated 

before is that amputated patients have damage to their nerve endings, which causes much 

higher noise in EMG recordings. We see that for sequential movement orderings in 

Figure 16, the accuracy hovers around thirty percent for the majority of movements. 

When KL ordering is applied in Figure 17 however, we see jumps of ten to twenty 

percent accuracy for most movements. Comparing the two results in Figure 18 we see a 

ten percent improvement for KLD when compared to sequential movements. Lastly using 

VAR as a feature in Figure 19, we see a ten percent improvement for KLD, but near the 

last ten movements KLD actually performed worse than sequential. 
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Figure 16. Database 3 Sequential RF MAV 

 

Figure 17. Database 3 KLD RF MAV 
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Figure 18. Database 3 Sequential and KLD Comparison MAV 

 

Figure 19. Database 3 Sequential and KLD Comparison VAR 
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CHAPTER 6 

Discussion 

 Based on the results from Chapter 5, KLD ordering seemed to improve classifier 

performance on all three features used. Classifiers that had the best performance overall 

such as SVM with an RBF kernel, and Random Forest saw the largest improvements with 

KLD orderings. Specifically, RBF and RF saw an average of a ten percent improvement 

in accuracy for movements five to forty-five from database 1. Other classifiers such as 

SVM Linear, KNN, and DF saw smaller two percent and three percent improvements per 

movement. LDA performed the worst out of the six classifiers and the performance of 

LDA did not seem to improve with KLD movement ordering. LDA’s poor performance 

could be attributed to the classification problem in question. Movements that overlap 

slightly are difficult for linear classifiers to classify even with decreases in movement 

overlap.  

 The performance of KLD movement ordering showed improvement per 

movement, but KLD seemed to converge in performance with sequential movement 

orderings for movements past forty. One explanation for the convergence in performance 

is that KLD movement orderings must eventually add movements with lots of overlap. 

KLD tries to add movements one at time by how they differ from other movements, but 

eventually all the movements that have a lot of overlap will be added last. Movements 

with lots of overlap that are added near the end will reduce classifier performance and 

eventually cause KLD ordering to perform equally to sequential movement ordering as 

seen in the results chapter. 
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The three features used for classification represent different time-feature 

representations of the amplitude of the sEMG signal, but as seen in the results chapter 

MAV and RMS had identical performance. The explanation for similar performance has 

to do with how MAV and RMS function. MAV takes the mean absolute value from the 

signal and RMS squares the signal and then takes the square root. Signals from database 

1 were already rectified so only positive values were used, which meant that MAV and 

RMS were both taking the mean of the signal which led to their identical performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 42 

CHAPTER 7 

Conclusion 

The work presented here demonstrated that statistics can be used in conjunction 

with machine learning algorithms in order to improve classifier performance for sEMG 

movement recognition. Using the Kullback-Leibler Divergence, movement overlap that 

reduces classifier performance was able to be reduced. Along with improvements in 

classifier performance, the research conducted for this thesis can used as a guide in order 

to allow computational researchers to delve into the sEMG classification problem. 

 Future work to improve the sEMG classification presented here could include 

utilizing Deep Learning to reduce sEMG noise and utilizing Deep Learning to classify 

sEMG movements. There has been success by researchers who have used Deep Learning 

instead of conventional machine learning algorithms when it came to classifying 

movements [20]. Deep Learning algorithms develop their own features so they could 

learn patterns of movement better than standard machine learning algorithms. Future 

steps will be to begin implementing a novel Deep Learning algorithm for the use of EMG 

classification. 
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